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Partial feedback linearization is applied to a harmonically excited beam with
one-sided spring to reduce vibration amplitudes while keeping the control e!ort
small. Vibration amplitudes are reduced by globally stabilizing the small amplitude
1-periodic solution which is one of the coexisting solutions. As the 1-periodic
solution represents a natural solution of the uncontrolled system, no control e!ort
will be needed once the system vibrates in the 1-periodic response. To control the
multi-degree-of-freedom (d.o.f.) beam system to the 1-periodic solution, only one
actuator is used that controls one (d.o.f.). The behaviour of the other d.o.f.s is
eventually described by the zero dynamics. Whether these d.o.f.s converge to the
1-periodic solution depends on the stability of the zero dynamics. The global
asymptotic stability of the non-autonomous zero dynamics can be partially
determined by a frequency domain technique known as the circle criterion.
However, the circle criterion does not guarantee stability at all actuator positions
along the beam

( 1999 Academic Press
1. INTRODUCTION

Frequently, non-linear dynamical systems such as suspension bridges [1], gear
boxes [2], or ships colliding at fenders [3], possessing several di!erent periodic
solutions at the same values for the system parameters occur. Some of these
so-called coexisting periodic solutions appear as large-amplitude vibrations which
can cause damage and increasing wear to the system. Stabilizing one of the
coexisting periodic solutions with small-amplitude vibration can prevent damage
and wear while the control e!ort can be kept small because once the system
vibrates in the low-amplitude response no further control e!ort is needed.

Much e!ort has been made to stabilize periodic solutions embedded within
chaotic attractors [4, 5], mainly because almost any small neighbourhood around
any point in the attractor will be reached in "nite time such that a control scheme
based on a linear approximation of the system dynamics can be used to stabilize
sAlso at: Faculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE Enschede,
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a desired periodic solution [6, 7]. In many mechanical applications, chaotic
attractors only exist in a few small regions of the parameter space, whereas damage
and wear to such systems can occur in many large regions as a result of
large-amplitude periodic vibrations [8]. If no chaotic attractors exist, other control
schemes are needed to stabilize one of the coexisting small-amplitude periodic
solutions to obtain vibration amplitude reduction [9, 10]. In this paper, non-linear
control based on feedback linearization [11] will be used. Partial feedback
linearization is applied because only part of the dynamics can be linearized by
feedback as a result of under-actuation [12]. Under-actuation is inherent to many
practical applications and occurs whenever there are less actuators than d.o.f.s.

Partial feedback linearization is used to control one actuator position on
a harmonically excited beam with a one-sided spring; only if the actuator is placed
at the middle of the beam, opposite to the one-sided spring, the dynamics can
entirely be linearized by feedback. The actuator position is controlled from
a large-amplitude 2-periodic response to a small-amplitude 1-periodic response
both in simulations and experiments. At the 1-periodic response, vibration
amplitudes are reduced whereas the control e!ort converges to zero whenever the
so-called zero dynamics are globally asymptotically stable. Global asymptotic
stability of the zero dynamics can be proved by applying the circle criterion [13].
However, the circle criterion guarantees stability only at certain actuator positions
along the beam.

2. BEAM WITH ONE-SIDED SPRING

The harmonically excited beam with one-sided spring captures three essential
elements that characterize many non-linear dynamical systems in engineering
practice; see Figure 1. Firstly, it contains a beam, a large #exible structure that is
supported by leaf springs and can be accurately modelled applying a linear
multi-d.o.f. model. Secondly, it contains a one-sided spring, a non-smooth local
non-linearity that adds a restoring force to the middle of the beam for positive
displacements q

mid
[14, 15]. Thirdly, it contains a harmonic exciter represented by

a rotating mass unbalance that adds a sine-shaped force to the middle of the beam.
Figure 1. Beam with one-sided spring.
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A simple, though, su$ciently accurate model of the beam is required for control
design. A 3-d.o.f. model is obtained after reducing an accurate model with 152
d.o.f.s applying a component-mode synthesis method [16]. The 152 d.o.f. model is
reduced to avoid large computational times both in simulations and experiments.
The reduced model is, of course, less accurate. However, the loss of accuracy mainly
applies to the high-frequency behaviour of the linear beam while our interest
focuses on the low-frequency response of the non-linear beam system. The 3-d.o.f.
model contains two interface d.o.f.s (q

act
, q

mid
) needed to apply the external forces

caused by the exciter v(t), the one-sided spring F
nl
(q), and the input u. Furthermore,

it contains one virtual d.o.f. (qm) that accounts for the "rst eigenmode of the beam
[17]. The 3-d.o.f. model contains three positive-de"nite matrices: a mass matrix M,
a damping matrix B, and a sti!ness matrix K. These matrices depend on the
position where the input u is applied. In the sequel, the input can be applied at one
of the equidistantly distributed positions between the leaf spring, position 2, and the
middle of the beam, position 67, see Figure 1. Initially, the input is applied at
a quarter of the beam, position 34. If the actuator position is changed, the values for
M, B, and K change.

The 3-d.o.f. model together with the external forces determine the equations of
motion of the non-linear beam system and can be given as

MqK#Bq5 #Kq#F
nl
(q)"h

2
v(t)#h

1
u, (1)

with the excitation force v (t) represented by a known function of time

v(t)"A
exc

cos (2n f
exc

t ), (2)

and the restoring force of the one-sided spring F
nl
(q) given by

F
nl
(q)"k

nl
e(q

mid
)h

2
hT
2
q, e(q

mid
)"G

1
0

if q
mid

'0,
if q

mid
)0,

(3)

with qT"[q
act

q
mid

qm]T, where h
i
represents a 3]1 transition matrix with zeros

except for the ith entry which equals one, A
exc

represents the amplitude of the
excitation force, f

exc
represents the excitation frequency, and k

nl
represents the

sti!ness of the one-sided spring; see Appendix A for numerical values of a 3-d.o.f.
model. The equations of motion are written in state-space form as

x5 "A(x)x#b
2
v(t)#b

1
u"f (t, x)#b

1
u, (4)

with x"[qTq5 T]T, and

A (x)"C
0 I

!M~1(K#k
nl
e(q

mid
)h

2
hT
2
) !M~1BD , b

i
"C

0
!M~1h

i
D . (5)

The accuracy of the model of the beam system is shown in Figure 2 for a 2-periodic
solution at an excitation frequency of 35 Hz. In Figure 2, both the measured
displacement, reconstructed velocity, and measured acceleration at the actuator
position (q

act
, qR

act
, qK

act
), and at the middle of the beam (q

mid
, qR

mid
, qK

mid
), are depicted

together with the numerical results; the velocities were reconstructed from the
measured displacement and accelerations applying a switching extended Kalman



Figure 2. 2-periodic solutions of the uncontrolled beam system (u"0) with an actuator placed at
position 34.
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"lter based on the two linear regimes of the beam system: q
mid

'0, and q
mid

)0. It
can be seen that a good agreement is obtained between the measured and
calculated response of the uncontrolled beam system (u"0). The periodic
behaviour of the uncontrolled beam system as a function of the excitation
frequency is depicted in Figure 3. It shows the maximum absolute values of the
periodic displacement for both the actuator position Dq

act
D
max

and the middle of the
beam Dq

mid
D
max

. The periodic behaviour is also shown for the linear model, thus,
without the one-sided spring. There are two main di!erences in periodic behaviour
between the linear and the non-linear model. Firstly, the natural frequencies of the
linear model precede the harmonic resonance frequencies of the non-linear model
due to the additional sti!ness of the one-sided spring in the non-linear model.
Secondly, coexisting n-periodic solutions, n3M2, 3,2N, appear for the non-linear
model at certain frequencies. Figure 3 shows that if di!erent periodic solutions
coexist, the 1-periodic solution has the smallest vibration amplitude in absolute
value. This supports the objective to stabilize the 1-periodic solution to obtain
vibration amplitude reduction.

3. EXISTENCE OF A 1-PERIODIC SOLUTION

The existence of a 1-periodic solution at an arbitrary excitation frequency is
needed for the ability to stabilize it within the entire frequency domain; Figure 3 is



Figure 3. Periodic behaviour of the uncontrolled beam system (u"0) with an actuator placed at
position 34.
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only an indication that such a solution indeed exists. The existence of a 1-periodic
solution can be proved applying Yoshizawa's theorem [18].

Theorem. ¸et x5 "f (t, x)"f (t#¹, x) denote the uncontrolled dynamics of the
beam. Assume that, for any initial condition x(t

0
)"x

0
, these dynamics have a unique

solution, and assume moreover that the solutions are ultimately bounded with bound
B. ¹hen there exists a periodic solution x of period ¹ such that ExE)B, ∀t3R; EXE
denotes the Euclidean norm of matrix X, or EXE"Jj

max
(XTX) with the maximal

eigenvalue of XTX.

Yoshizawa's theorem exploits Browder's "xed point theorem, and requires two
conditions to be ful"lled: uniqueness of solutions and ultimate boundedness.

Uniqueness of solutions can be proved if f (t, x) determined via equation (4)
satis"es a global Lipschitz condition. A global Lipschitz condition for the beam
system can be obtained if it can be shown that x will always be in a set where f (t, x )
is uniformly Lipschitz in x [19]. To ensure this, two conditions need to be ful"lled.
Firstly, f (t, x ) should be uniformly Lipschitz in x, or

Ef (t, x )!f (t, y )E"EA (x)x!A(y )yE

)LEx!yE, ∀x, y3Rn and ∀t3[t
0
, t

1
], (6)
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with the so-called Lipschitz constant L. For the beam system, L is given by

L"KK C
0 I

!M~1(K#k
nl
h
2
hT
2
) !M~1BD KK . (7)

Secondly, for each "nite x(t
0
)"x

0
there should exist a positive constant h"h (x

0
)

such that

Ef(t, x
0
)E"EA(x

0
)x

0
#b

2
v (t)E)LEx

0
E#Eb

2
A

exc
cos (2n f

exc
t)E

)LEx
0
E#Eb

2
A

exc
E)h, ∀t3[t

0
, t

1
]. (8)

As both conditions are ful"lled for the beam system whereas t
1

in equations (6) and
(8) can be chosen arbitrarily large, f (t, x), which is piecewise continuous in t, can be
proved to satisfy a global Lipschitz condition [19] which results in the fact that
there exists a unique solution for x5 "f (t, x) with x (t

0
)"x

0
over [t

0
, t

1
] for all

t
1
't

0
.

Ultimate boundedness can be proved with Khalil's lemma on non-vanishing
perturbations [19]. For the application of this lemma, two conditions need to be
ful"lled. Firstly, the homogeneous system, i.e., x5 "A (x)x, see equation (4), must be
exponentially stable at the equilibrium point x"0. Secondly, the perturbation
b
2
v (t) must be uniformly bounded.
Exponential stability for the homogeneous system can be shown with the

following Lyapunov function candidate:

<(q, q5 )"1
2
q5 TMq5 #1

2
(q5 T#qT)M (q5 #q)#qT(K#1

2
(B!M))q

#qTk
nl
e(q

mid
)h

2
hT
2
q, (9)

which represents an energy-like function that does not need to have a physical
meaning besides the fact that < (q, q5 ) as a whole should be positive de"nite.
A su$cient condition for <(q, q5 ) to be positive de"nite is obtained if
K#1/2(B!M)*0 because M"MT'0, B"BT'0, K"KT'0, and
k
nl
h
2
hT
2
"(k

nl
h
2
hT
2
)T*0. <(q, q5 ) is bounded by positive-de"nite quadratic

functions, or

¸
1
(q, q5 ))<(q, q5 ))¸

2
(q, q5 ), (10)

with

¸
1
(q, q5 )"1

2
q5 TMq5 #1

2
(q5 T#qT )M(q5 #q)#qT (K#1

2
(B!M))q

*1
2
q5 TMq5 #1

2
(q5 T#qT )M(q5 #q)"1

2
xT C

M
M

M
2MD x"1

2
xTM*x

*c
1
ExE2, (11)

¸
2
(q, q5 )"¸

1
(q, q5 )#qTk

nl
h
2
hT
2
q

)c
2
ExE2. (12)
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The positive constants c
1

and c
2

equal

c
1
"1

2
j
min

(M* ), (13)

c
2
"3

2
EME#EKE#1

2
EB!ME#k

nl
, (14)

with j
min

the minimal eigenvalue of the corresponding matrix. For the derivative of
<(q, q5 ),

<Q (q, q5 )"!qTKq!q5 T (2B!M )q5 !qTk
nl
e(q

mid
)h

2
hT
2
q

)!qTKq!q5 T(2B!M)q5 "!xT C
K
0

0
2B!MDx

)!c
3
ExE2 (15)

holds with positive constant c
3
"min(j

min
(K ), j

min
(2B!M )), <Q (q, q5 ) is negative

de"nite provided that (2B!M) is positive de"nite. Both conditions (2B!M)'0
and K#1/2(B!M )*0, are satis"ed for the beam system at hand. Substitution of
<(q, q5 ))c

2
ExE2, equation (10), gives

<Q (q, q5 ))!

c
3

c
2

<(q, q5 ). (16)

This yields

<(q, q5 ))<(q(t
0
), q5 (t

0
))e~(c3@c2)(t~t0), ∀t*t

0
, (17)

that assures the equilibrium point x"0 of the homogeneous system to be
exponentially stable, or

Ex(t)E)S
c
2

c
1

e~(c3@2c2)(t~t0)Ex(t
0
)E, ∀t*t

0
, (18)

because c
1
ExE2)<(q, q5 ))c

2
ExE2. Exponential stability for the homogeneous

system results in ultimate boundedness of the perturbed system, i.e., the
homogeneous system together with the perturbation b

2
v(t), if the perturbation is

uniformly bounded at an arbitrary excitation frequency, or

Eb
2
v (t)E"Eb

2
A

exc
cos(2n f

exc
t)E)Eb

2
A

exc
E"c

4
, ∀t*0. (19)

This can be seen as follows. If<(q, q5 ) in equation (9) is used as a Lyapunov function
candidate for the perturbed system, the following upper bound can be obtained on
the derivative <Q (q, q5 ),

<Q (q, q5 ))!c
3
ExE2!

L< (q, q5 )
Lq5

M~1h
2
v(t)

)!c
3
ExE2#KK

L< (q, q5 )
Lq5 KK c4

)!c
3
ExE2#c

4
c
5
ExE, (20)
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since for the partial derivative of <(q, q5 ),

KK
L<(q, q5 )

Lq5 KK"E2Mq5 !MqE)3EMEExE"c
5
ExE (21)

holds. This upper bound on <Q (q, q5 ) can be written as

<Q (q, q5 ))!(1!h)c
3
ExE2!hc

3
ExE2#c

4
c
5
ExE, (22)

with 0(h(1. It follows that for all ExE*(c
4
c
5
)/(hc

3
),<Q (q, q5 ) is negative de"nite.

In other words, all solutions of equation (20) are ultimately con"ned to the region
ExE((c

4
c
5
)/(hc

3
) because here

<Q (q, q5 ))!(1!h)c
3
ExE2, ∀ExE*

c
4
c
5

hc
3

(23)

holds. Substitution of <(q, q5 ))c
2
ExE2, gives

<Q (q, q5 ))!(1!h)
c
3

c
2

<(q, q5 ), ∀ExE*
c
4
c
5

hc
3

. (24)

This results in the following behaviour for ExE,

Ex(t)E)S
c
2

c
1

e~(1~h)(c3@2c2) (t~t0)Ex(t
0
)E, ∀ExE*

c
4
c
5

hc
3

, t
0
)t(t

1
, (25)

as c
1
ExE2)<(q, q5 ))c

2
ExE2. So, far all ExE*(c

4
c
5
)/(hc

3
), ExE is bounded by

a function that decreases exponentially. Therefore, ExE is ultimately bounded by the
value of this function at ExE"(c

4
c
5
)/(hc

3
), or

Ex(t)E)S
c
2

c
1

]1]
c
4
c
5

hc
3

"B, ∀t*t
1
. (26)

It can be concluded that for any "nite x (t
0
), the solution x of the uncontrolled beam

system will remain below the positive constant B after some "nite time t
1
.

Ultimate boundedness combined with the existence and uniqueness of solutions
enables the application of Yoshizawa's theorem which guarantees the existence of
a 1-periodic solution for the uncontrolled beam system. The existence of
a 1-periodic solution p justi"es the study of the error dynamics related to this
solution which is used in the control design based on feedback linearization.

4. PARTIAL FEEDBACK LINEARIZATION

Feedback linearization [11] can be applied to control the beam system as an
accurate model is available. The multi-d.o.f. beam system is controlled with only
one actuator, i.e., the controlled system is under-actuated. Due to under-actuation,
only part of the system dynamics can be linearized by feedback. Therefore,
a version of partial feedback linearization is applied which linearizes that part of the
dynamics needed to guarantee the actuator position to vibrate in the 1-periodic
response. For the special case where the actuator is placed at the middle of the
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beam, opposite to the one-sided spring, the entire dynamics can be linearized by
feedback. This enables a version of feedback linearization that compensates only
for the non-linear terms resulting in the control e!ort to be zero part of the time.

Both feedback linearization and partial feedback linearization will be applied
to the error dynamics of the beam system. The error dynamics are obtained
by subtracting the equations of motion of the 1-periodic solution p, p"
[p

act
p
mid

pm]T, from the equations of motion at the momentary solution q, see
equation (1), or

MeK#Be5 #Ke#h
2
/(t, e

mid
)"h

1
u, (27)

with e"q!p"[e
act

e
mid

em]T, and

/(t, e
mid

)"k
nl
e (q

mid
)q

mid
!k

nl
e(p

mid
)p

mid
. (28)

A special feature of these error dynamics, which will be exploited in the stability
analysis in the next section, is the sector-bounded non-linearity /(t, e

mid
) for which

0)U (t, e
mid

)"
/(t, e

mid
)

e
mid

)k
nl
, U(t, 0)"0 (29)

holds. The sector-boundedness is depicted in Figure 4 for two periodic solutions of
the error dynamics with u"0: a 2-periodic solution at 38 Hz, and a 3-periodic
solution at 57 Hz. It can be seen that U (t, e

mid
) remains bounded by [0, k

nl
]; note

that U (t, e
mid

) is periodic with a fundamental frequency u
f

of 19 Hz.
Partial feedback linearization is applied with an actuator placed at an arbitrary

position along the beam where the dynamics can only be partially linearized by
feedback. In this case, the input u is chosen as

u"
1

hT
1
M~1h

1

MhT
1
M~1(Be5 #Ke#h

2
/ (t, e

mid
) )#uN. (30)

The "rst part of u compensates part of the error dynamics whereas the second part
consists of a new input w. This input is chosen such that a desired behaviour for the
actuator position is obtained, or

w"!K eR !K e , (31)
Figure 4. Sector-bounded non-linearity U(t, e
mid

) of the uncontrolled beam system (u"0) for
a 2-periodic solution at 38 Hz and a 3-periodic solution at 57 Hz.

D act P act
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where K
P

and K
D

are positive control parameters. The feedback (30, 31) transforms
the error dynamics of equation (27) into

eK
act
#K

D
eR
act
#K

P
e
act
"0, (32)

for the d.o.f. at the actuator position, and

M
in
eK#B

in
e5 #K

in
e#h

in
/(t, e

mid
)"0, (33)

with h
in
"[1 0]T, M

in
"L

in
M, B

in
"L

in
B, K

in
"L

in
K, and L

in
"[h

2
h
3
]T, for

the so-called internal dynamics which are assumed to have a bounded solution.
Equation (32) is globally asymptotically stable at e

act
"eR

act
"0 using Lyapunov's

second method with the Lyapunov function candidate <
PFL

(e
act

, eR
act

):

<
PFL

(e
act

, eR
act

)"1
2
eR 2
act
#1

2
K

P
e2
act

,

<Q
PFL

(e
act

, eR
act

)"!K
D
eR 2
act

. (34)

As <Q
PFL

(e
act

, eR
act

) is only negative semi-de"nite in the state (e
act

, eR
act

), it is necessary
to determine the largest invariant set in M (e

act
, eR

act
)3R2 D<Q

PFL
(e

act
, eR

act
)"0N. For the

beam system, this set equals the origin. Therefore, the global asymptotic stability at
e
act
"eR

act
"0 is guaranteed after using LaSalle's theorem [19]. When (e

act
, eR

act
)

tends to zero, the internal dynamics of equation (33) is no longer in#uenced by
e
act

and is now called the zero dynamics. The zero dynamics is de"ned to be the
internal dynamics of the beam system when the output y"e

act
is kept at zero by the

input u. The stability of the zero dynamics cannot be in#uenced by the control
parameters K

P
and K

D
. Therefore, vibration reduction with small control e!ort

depends on whether the zero dynamics converges to zero, i.e., whether the zero
dynamics is globally asymptotically stable.

The special case for which the feedback linearization is applied with an actuator
placed at the middle of the beam, i.e., the entire dynamics can be linearized by
feedback, the controlled error dynamics of equation (27) enables the input u to be
zero part of the time. For this purpose, the input only compensates the non-linear
term /(t, e

mid
), or

u"
1

hT
2
M~1h

2

MhT
2
M~1h

2
/(t, e

mid
)N"/ (t, e

mid
). (35)

As / (t, e
mid

) equals zero in one regime of the state variable e
mid

"q
mid

!p
mid

, the
input also equals zero at this regime; see Table 1. Besides /(t, e

mid
), also the

complementary function !/@(t, e
mid

), can be compensated by the input. The
complementary function !/@(t, e

mid
) is related to /(t, e

mid
) by

/(t, e
mid

)"k
nl
e
mid

!/@(t, e
mid

). (36)

The error equation based on each of the inputs is given by

MeK#Be5 #(K#ik
nl
h
2
hT
2
)e"0, i3M0, 1N, (37)

with i"0 for the input that compensates /(t, e
mid

) and i"1 for the input that
compensates !/@(t, e

mid
). This error equation is globally asymptotically stable for



TABLE 1

Input u related to the sector-bounded non-linearity

Regime /(t, e
mid

) !/@ (t, e
mid

) u"/ (t, e
mid

) u"!/@ (t, e
mid

)

q
mid

*0, p
mid

*0 k
nl
e
mid

0 u"k
nl
e
mid

u"0
q
mid

*0, p
mid

(0 k
nl
q
mid

k
nl
p
mid

u"k
nl
q
mid

u"k
nl
p
midq

mid
(0, p

mid
*0 !k

nl
p
mid

!k
nl
q
mid

u"!k
nl
p
mid

u"!k
nl
q
midq

mid
(0, p

mid
(0 0 !k

nl
e
mid

u"0 u"!k
nl
e
mid
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the entire beam system e"e5 "0 using Lyapunov's second method with the
Lyapounov function candidate <

FL
(e, e5 ) for each of the inputs:

<
FL

(e, e5 )"1
2
e5 TMe5 #1

2
eT(K#ik

nl
h
2
hT
2
)e, i3M0, 1N,

<Q
FL

(e, e5 )"!e5 TBe5 . (38)

<Q
FL

(e, e5 ) is negative semi-de"nite, but again the largest invariant set in
M(e, e5 )3R6 D<Q

FL
(e, e5 )"0N equals the origin. Therefore, global asymptotic stability

at the origin is guaranteed after using LaSalle's theorem.
In general, it will not be possible to choose the input u to compensate the

non-linear terms. Therefore, the ability to stabilize the 1-periodic solution of the
beam system will depend on the stability of the zero dynamics. To determine this
stability, the circle criterion can be applied.

5. STABILITY OF THE ZERO DYNAMICS BY THE CIRCLE CRITERION

Stability proofs for non-autonomous zero dynamics that contain a non-smooth
non-linearity are often related to a frequency domain technique known as the circle
criterion [19]. The circle criterion can be used to guarantee the existence of
a quadratic Lyapunov function which guarantees the global asymptotic stability of
the zero dynamics [13]. However, for the beam system, the circle criterion
guarantees this stability only for a limited range of actuator positions.

The zero dynamics of the controlled beam system is given by

M
z
zK#B

z
z5 #K

z
z#h

z
/(t, e

mid
)"0, (39)

with z"[e
mid

em]T, h
z
"[1 0]T, and positive-de"nite matrices M

z
"L

z
MLT

z
,

B
z
"L

z
BLT

z
, and K

z
"L

z
KLT

z
with L

z
"[h

2
h
3
]T. A state-space model for the

zero dynamics is written as

e5 "A
z
e!b

z
u,

y"cT
z
e"e

mid
,

u"!/(t, e
mid

), (40)
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with e"[zT zR T]T, and

A
z
"C

0
!M~1

z
K

z

I
!M~1

z
B

z
D , b

z
"C

0
!M~1

z
h
z
D , c

z
"C

h
z

0 D . (41)

This model constitutes the linear transfer between the input u and the output y,
represented by the frequency response function s

z
( ju) :

v
z
( ju)"

>( ju)
; ( ju)

"cT
z
(A

z
!juI)~1b

z
. (42)

If A
z

has no eigenvalues on the imaginary axis, if the non-linearity /(t, e
mid

) is
sector-bounded, and if the linear error dynamics with u"!k

i
e
mid

, k
i
3[0, k

nl
], is

globally asymptotically stable, then the circle criterion can be applied to investigate
whether z"zR"0 is globally asymptotically stable [13]. The circle criterion
guarantees this stability when the inequality

RMs
z
( ju)N'!

1
k
nl

, ∀u3R, (43)

is satis"ed where R denotes the real part of the corresponding function. The circle
criterion is based on the linear part of the zero dynamics. This linear part di!ers
when the complementary system description of the zero dynamics is used. The
complementary system is obtained by substitution of /(t, e

mid
)"k

nl
e
mid

!

/@(t, e
mid

), equation (36), in the state-space model of equation (40). The circle
criterion applied to the complementary system gives

RMs@
z
( ju)N'!

1
k
nl

, ∀u3R, (43)

with s@
z
( ju)"cT

z
(A@

z
!juI)~1b

z
and A@

z
e"A

z
ek

nl
b
z
e
mid

, which can give less
conservative results.

The graphical representation of both inequalities (43) and (44), requires that
s
z
( ju) and s@

z
( ju), respectively, remain to the right of the vertical line through the

point (!1/k
nl
, 0) in the complex plane. This can be seen in Figure 5 where s

z
( ju) is

depicted for an actuator placed at a quarter of the beam, position 34, or closer to
the middle of the beam, position 52, see Figure 1. At position 34, the global
asymptotic stability of the zero dynamics cannot be proved with the circle criterion
based on s

z
( ju) because s

z
( ju) does not remain to the right of the vertical line

through the point (!1/k
nl
, 0). However, at position 52, the global asymptotic

stability of the zero dynamics is proved with the circle criterion because s
z
( ju)

remains to the right of this line.
The circle criterion guarantees global asymptotic stability of the zero dynamics

only for a limited range of actuator positions. This is shown in Figure 6, where the
minimal real values for both frequency response functions are depicted. It can be
seen that one of the frequency domain inequalities is always satis"ed for actuator
positions in a range between the middle of the beam, position 67, and position 50.
As each of the inequalities provides a su$cient condition for global asymptotic
stability, the 1-periodic solution can be stabilized globally asymptotically with one



Figure 5. Graphical representation of the circle criterion for the zero dynamics with an actuator
placed at position 34 and position 52 respectively.

Figure 6. The circle criterion for the zero dynamics at di!erent actuator positions along the beam.
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actuator placed anywhere between position 67 and position 50. This range can be
extended when the sti!ness of the one-sided spring is decreased. For example, when
k
nl
)2]104 N/m, !1/k

nl
)!5]10~5/Nm, the circle criterion guarantees

global asymptotic stability of the 1-periodic solution at any actuator position.

6. EXISTENCE OF PERIODIC SOLUTIONS FOR THE ZERO DYNAMICS

To possibly extend the range of actuator positions for which the 1-periodic
solution of the beam system can be stabilized globally, the stability of the zero
dynamics is related to the existence of periodic solutions for these dynamics.
Namely, if no periodic solutions for the zero dynamics exist no quasi-periodic or
chaotic solutions exist. A quasi-periodic solution is composed of a countable sum of
periodic solutions, whereas a chaotic solution has embedded within it an in"nite
number of unstable periodic solutions [20, 21]. If no periodic, quasi-periodic, or
chaotic solutions exist for the zero dynamics of the beam system besides z"z5 "0,
consequently no bounded long-term solutions exist besides z"z5 "0. However, all
solutions for the zero dynamics can be proved to be ultimately bounded similar to
the proof obtained for the uncontrolled dynamics. Therefore, z"z5 "0 must be
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globally asymptotically stable if no periodic solutions for the zero dynamics of the
beam system exist.

Periodic solutions for the zero dynamics can only exist when the inequalities (43)
and (44) from the circle criterion are not satis"ed. Otherwise, the sector condition is
violated which can be seen as follows. The sector condition

0)
/(t, y)

y
)k

nl
, ∀t3R, (45)

implies

!/(t, y) (k
nl
y (t)!/(t, y)))0, ∀t3R, (46)

which can be shown by multiplying the sector condition with y2, subtracting
/(t, y)y from it, and using the fact that a)0)b implies ab)0. A violation of the
sector condition with u"!/(t, y) would result in

RMucu#k
nl
ucyN'0, ∀t3R, (47)

where the superscript c denotes the complex conjugate; since u is real-valued one
has uc"u. integration of this equation gives

RG P
=

0

(ucu#k
nl
ucy) dtH'0. (48)

Applying Parceval's theorem as both u and y are periodic results in

RG P
=

~=

(;c ( ju);( ju)#k
nl
;c ( ju)>( ju)) duH'0. (49)

Substitution of s
z
( ju)"Y( ju)U~1( ju) gives

RG P
=

~=

Uc( ju)U( ju) (1#k
nl
s
z
( ju)) duH'0, (50)

which always holds if

RM1#k
nl
s
z
( ju)N'0, ∀u3R. (51)

Inequality (51) is equal to inequality (43) used in the circle criterion. Apparently, for
the beam system, the circle criterion can be interpreted being a condition for the
non-existence of periodic solutions due to a violation of the sector condition. To
avoid such a violation, every periodic solution for the zero dynamics should satisfy
for at least one frequency u

RMs
z
( ju)N)!

1
k
nl

, s
z
( ju)"

+=
n/~=

cy
n
d(u!nu

f
)

+=
n/~=

cu
n
d(u!nu

f
)
, (52)

where ci
j
denotes the jth Fourier coe$cient belonging to the periodic signal i. For

the individual frequency components,

s
z
( jnu

f
)"
> ( jnu

f
)

; ( jnu
f
)
"

cy
n

cu
n

, n3M0, 1, 2,2N (53)
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holds. From this equation it can be concluded that, in terms of s
z
( ju), all

n-periodic solutions, n3M1, 2,2N, with the same fundamental frequency u
f

are
equal.

To show that periodic solutions for the zero dynamics, represented by s
z
( ju),

satisfy equation (52), "rst the uncontrolled error dynamics, represented by s( ju),
are studied. The uncontrolled error dynamics are depicted in Figure 7 with an
actuator placed at position 34. It can be seen that the 2-periodic solution at 38 Hz
(L), and the 3-periodic solution at 57 Hz (*), both based on u

f
"19 Hz, indeed

have a frequency component that satis"es RMs( ju)N)!1/k
nl

whereas both
solutions are equal in terms of s( ju). In Figure 7, also the eigenvalues belonging to
the homogeneous systems are depicted for both linear regimes: ui

0,1
if q

mid
)0, and

ui
0,2

if q
mid

'0, i3M1, 3N. It can be seen that the existence of periodic error
solutions is restricted by the eigenvalues u1

0,1
and u1

0,2
; for the considered

dynamics this can be shown numerically for values of k
nl

up to+107 N/m which
can be increased signi"cantly when decreasing the modal damping. Periodic error
solutions based on fundamental frequencies u

f
larger than u1

0,2
would always

satisfy the frequency domain inequality (51) and so they do not exist for the
considered dynamics; RMs ( ju1

0,2
)N being almost equal to !1/k

nl
can be derived

from RMs@( ju1
0,2

)N+0 resulting from the system being proportionally damped.
The existence of periodic solutions for the zero dynamics is restricted by the

eigenvalues u*1
0,1

and u*1
0,2

belonging to the homogeneous systems in both linear
regimes of the internal dynamics; see the left part of Figure 8. However, it can be
seen in the right part of Figure 8 that when the sti!ness of the one-sided spring is
increased to ten times its value, 10k

nl
, periodic solutions with fundamental

frequency u
f
3Mu*2

0,1
, u*2

0,2
N can also exist. Furthermore, Figure 8 shows that

inequality (51) is not satis"ed for the current beam system with an actuator placed
at position 34. Therefore, it is expected that the controlled beam system contains
coexisting periodic solutions. This is shown in Figure 9, where in the left part the
local asymptotic stability of the 1-periodic solution is depicted at di!erent actuator
positions and at di!erent excitation frequencies. Local asymptotic stability of the
1-periodic solution is determined by its Floquet multipliers [20]. If all Floquet
Figure 7. Existence of periodic solutions for the uncontrolled error dynamics with an actuator
placed at position 34.



Figure 8. Existence of periodic solutions for the zero dynamics with an actuator placed at posi-
tion 34.

Figure 9. Local and global asymptotic stability of the zero dynamics at di!erent actuator positions
and excitation frequencies.
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multipliers k
i
are less than one in absolute value, the 1-periodic solution is locally

asymptotically stable. In the right part of Figure 9, it is shown that the 1-periodic
solution is unstable at certain excitation frequencies for all actuator positions up to
position 43. This can be seen by the lines marked 1 to 1)5 which represent lines of
equal height for the largest Floquet multiplier in absolute value. As the 1-periodic
solution is unstable, periodic solutions for the zero dynamics must exist. However,
these periodic solutions are restricted by the eigenvalues belonging to both
homogeneous systems, u*i

0,1
and u*i

0,2
. These eigenvalues change if the actuator is

placed at di!erent positions along the beam because the positive-de"nite matrices
M

z
, B

z
, and K

z
change with the actuator position. For example, with an actuator

placed at position 34, 2-periodic solutions with fundamental frequency u
f
, or

2u
f
3[2u*1

0,1
, 2u*1

0,2
], can exist for excitation frequencies restricted by

f
exc

"2u*1
0,1

"63)8 Hz and f
exc

"2u*1
0,2

"84)2 Hz, see the right part of Figure 9.
As 2-periodic solutions exist up to position 43, global asymptotic stability cannot
occur below this actuator position. However, global asymptotic stability could be
guaranteed with the circle criterion for actuator positions ranging from position 50
to the middle of the beam at position 67. So, if conservatism is induced when
applying the circle criterion, it only occurs within a region of actuator positions
between position 43 and position 50.
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7. SIMULATIONS AND EXPERIMENTS

Simulations and experiments illustrate the ability to stabilize the 1-periodic
solution of the beam system. Simulations are performed for two di!erent actuator
positions: at the middle of the beam, and at a quarter of the beam. At the middle of
the beam, stability of the error dynamics is guaranteed for all d.o.f.s whereas the
input can be kept zero part of the time. At quarter of the beam, stability is
guaranteed only for the d.o.f. at the actuator position whereas the stability of the
other d.o.f.s depends on the stability of the zero dynamics. To illustrate the ability
to stabilize the 1-periodic solution in case only local asymptotic stability for the
zero dynamics can be obtained, experiments are performed with an actuator placed
at this position.

Feedback linearization applied at the middle of the beam guarantees global
asymptotic stability at e"e5 "0 for the entire beam system whereas the input u can
be kept zero part of the time. This is shown in Figure 10, by simulations, where the
input is chosen to compensate the sector-bounded non-linearity: u"/(t, e

mid
) in

the left part, and u"!/@(t, e
mid

) in the right part. With these inputs, all d.o.f.s
starting from the large-amplitude 2-periodic solution at 37 Hz converge to the
small-amplitude 1-periodic solution after control is switched on at t"0)5 s.
Stabilizing the 1-periodic solution results in vibration amplitude reduction as seen
in the upper part of Figure 10 where q

act
is depicted. The corresponding control

e!ort converges to zero as the errors converge to zero as seen in the lower part of
Figure 10. The error convergence is similar for both inputs because the damping
Figure 10. Simulations with feedback linearization applied at the middle of the beam, position 67.
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matrix B is equal in both error schemes. However, the error scheme based on
/@(t, e

mid
) results in a high frequent input, which is caused by adding the sti!ness of

the one-sided spring k
nl

to the linear sti!ness matrix K ; see equation (37). The input
u can be kept zero part of the time which can be seen for both control schemes in the
lower part of Figure 10.

Partial feedback linearization applied elsewhere on the beam guarantees global
asymptotic stability for the actuator d.o.f : e

act
"eR

act
"0. The behaviour of the

other d.o.f.s is eventually described by the zero dynamics. The stability of the zero
dynamics determines whether vibration amplitudes are reduced and whether
the control e!ort converges to zero. For actuator positions between position 2
and position 50, stability can only be guaranteed locally; see the right part of
Figure 9. The ability to stabilize the 1-periodic solution based only on the local
asymptotic stability of the zero dynamics, is shown by simulations as depicted in
Figure 11 with the input u based on equations (30) and (31). The simula-
tions are performed with an actuator placed at a quarter of the beam, position 34;
see Figure 1. At this actuator position, the 1-periodic solution at 35 Hz is stabilized
after control is switched on at t"0)5 s. Once the d.o.f. at the actuator position
vibrates in the 1-periodic response, at t"0)8 s, the behaviour of the other d.o.f.s is
described by the zero dynamics. The stability of the zero dynamics is illustrated in
Figure 11, where it can be seen that the errors e

mid
and em converge to zero. As the errors

converge to zero, the control e!ort decreases. The error convergence of the zero
dynamics is independent of the control parameters: K

P
"104/s2 and K

D
"100/s.
Figure 11. Simulations with partial feedback linearization applied at a quarter of the beam,
position 34.
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Experiments with partial feedback linearization and an actuator placed at
a quarter of the beam, position 34, show a similar behaviour as compared to the
simulations which can be seen in Figure 12. In the upper part of Figure 12, the
displacements at the actuator position q

act
and at the middle of the beam q

mid
are

depicted. Both displacements are measured with linear variable di!erential
transformers (LVDTs) having an accuracy of +10~6 m. Up to t"0)5 s, the
uncontrolled system vibrates in the stable 2-periodic response with large-amplitude
vibration. At t"0)5 s, control is switched on after which the 1-periodic solution is
stabilized giving both a vibration amplitude reduction and a control e!ort that
converges to zero. The input u accounts for the main di!erence between experiment
and simulation as can be seen in the lower part of Figure 12. This di!erence is due
to the generation of the control force by a shaker ampli"er combination. The
shaker-ampli"er combination contains mechanical and electrical parts that are
being modelled accurately only within a limited frequency range; for practical
reasons a restriction is made to a third order model [22]. Besides the
shaker-ampli"er combination, some other error sources ought to be mentioned,
namely inaccuracy in the measured displacements (q

mid
, q

act
), accelerations

(qK
mid

, qK
act

), and forces (u, v (t)), inaccuracy in the state reconstruction of the velocities
(qR

act
, qR

mid
) and the state variables of the virtual d.o.f. (m, mQ , mG ), inaccuracy by limiting

the number of d.o.f.s in the model of the beam, inaccuracy in the approximation of
the 1-periodic solution needed as the desired trajectory for control, and inaccuracy
in the model of the one-sided spring which is constructed as a second beam and
which is modelled by only considering its static behaviour [22].
Figure 12. Experiments with partial feedback linearization applied at a quarter of the beam,
position 34.
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8. CONCLUSIONS

Stabilizing the 1-periodic solution of a harmonically excited beam with one-sided
spring can reduce harmful vibration amplitudes whereas the control e!ort needed
converges to zero. The 1-periodic solution is stabilized with non-linear control
based on feedback linearization. Feedback linearization applied at the middle of
the beam guarantees global asymptotic stability of the entire error dynamics while
the control e!ort can be kept zero part of the time. Partial feedback linearization
applied elsewhere on the beam guarantees global asymptotic stability of the d.o.f. at
the actuator position. The behaviour of the other d.o.f.s is described by the zero
dynamics once the errors at the actuator position tend to zero. The stability of the
zero dynamics determines whether vibration amplitudes are reduced for the entire
beam. The global asymptotic stability of the zero dynamics can be guaranteed for
a limited range of actuator positions applying the circle criterion. At the other
actuator positions only local asymptotic stability can be obtained at certain regions
for the excitation frequency. However, local asymptotic stability of the zero
dynamics can be su$cient to stabilize the 1-periodic solution of the beam system as
shown by simulations and experiments.

Further research is focussed on a control scheme based on linear error feedback
[9]. Linear error feedback does not globally asymptotically stabilize the error of
a particular d.o.f. but modi"es the entire error dynamics by adding damping or
sti!ness such that the entire error can become stable at the origin. In this way, the
input u can be chosen just large enough to guarantee local or global asymptotic
stability, respectively, which is expected to reduce the required control e!ort.
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APPENDIX A

For an actuator placed at a quarter of the beam, position 34, the following
matrices were used:

M"

2)49171266]100 !7)39353071]10~1 !1)00670592]10~2

!7)39353071]10~1 4)70207355]100 2)55145832]10~2

!1)00670592]10~2 2)55145832]10~2 2)78179792]10~4

(kg),

B"

9)13975994]101 !5)46796875]101 !3)12421552]10~1

!5)46796875]101 7)30340017]101 3)54360794]10~1

!3)12421552]10~1 3)54360794]10~1 1)08926256]10~2

(Ns/m),

K"

3)82896231]105 !2)59390789]105 9)78184925]10~8

!2)59390789]105 2)10586254]105 !2)65589609]10~7

9)78184925]10~8 !2)65589609]10~7 6)10747501]101

(N/m),

k
nl
"1)9656]105 (N/m),

A
exc

"9)398]10~4 (2n f
exc

)2 (N).
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